Skip links
Academic Staff

Suchada Chanprateep Napathorn, Associate Professor, Ph.D.

Suchada Chanprateep Napathorn, Associate Professor, Ph.D.

Education

2004-2005 Postdoctoral Fellow at Cornell/Ludwig Institute for Cancer Research (LICR), Department of Food Science and Technology, Cornell University, Ithaca, NY, USA
1999-2002 Ph.D. (Biotechnology Engineering), Department of Food Science and Technology, Cornell University, Ithaca, NY, USA
1997-1998 UNESCO fellow, UNESCO International Post-Graduate University in Microbiology and Biotechnology, Osaka University, Japan
1993-1996 M.Sc. (Industrial Microbiology), Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
1989-1993 B.Sc. Genetics, Kasetsart University, Thailand

Invited positions and distinctions

2022-2026 Adjunct researcher at International Center for Biotechnology, Osaka University, Japan
2024 The world’s Top 2% Scientists by Elsevier (single year citation impact from Stanford University)
2023-2024 Specially Appointed Associate Professor (Full-Time) at International Center for Biotechnology, Osaka University, Japan from 1 April 2023 to 31 March 2024
2022 The world’s Top 2% Scientists by Elsevier (single year citation impact from Stanford University)
2019-2020 Specially Appointed Associate Professor (Full-Time) from 1 December 2019 to 31 May 2020 at International Center for Biotechnology, Osaka University, Japan
2006-2009 Short-term visiting researcher at Department of Biotechnology, Graduate School of Engineering, Osaka University, JAPAN

Training

2004-2005 Certificate of Postdoctoral Fellow at  Cornell/Ludwig Institute for Cancer Research (LICR) Department of Food  Science and Technology, Cornell University, Ithaca, NY, USA
1997-1998 Diploma (Microbial Technology) UNESCO International Post-Graduate University in Microbiology and Biotechnology, Osaka University, Japan (UNESCO Fellowship)

Research Expertise

Bioprocess Engineeringon-line monitoring and control system, process development and optimization

Research Interest

– On-line monitoring and control system for bioprocess system and engineering
– Biochemical engineering approaches toward bioprocess operation and optimization
– Process optimization for the production biodegradable polymer polyhydroxyalkanoates
– Process optimization for the production of therapeutic agents in Pichia pastoris and Escherichia coli
– Biopolymer characterization, biodegradation testing and biocompatibility testing
– Preparation of biocomposite films between PHAs and microcrystalline cellulose
– High-throughput screening of PHAs producing microorganisms
– Microencapsulation techniques in polyhydroxyalkanoates

Book

1 Napathorn, S.C. “Principle of Bioprocess Technology”, Chulalongkorn University Press, 2016. (ISBN 978-974-03-3474-3) สพจ. 2044
2 Napathorn, S.C. “Advances in Bioprocess Technology”, Chulalongkorn University Press, 2017. (ISBN 978-974-03-3613-6) สพจ. 2144
3 Napathorn, S.C. Production of Pineapple Microcrystalline Cellulose and Polyhydroxyalkanoates Using Pineapple Solid Wastes in Sultan, M.T.H., Abd-Aziz, S. and Napathorn, S.C. (Editors) “Pineapple and its wastes utilization towards circular bioeconomy and sustainability”, Universiti Putra Malaysia Press, Serdang, 2022. (ISBN 978-967-0035-28-4)
4 Napathorn, S.C. The Future of Biodegradable Polyhydroxyalkanoates: New Perspectives in Biochemical Engineering and Biotechnology Based on the Utilization of Abundant Lignocellulose Waste in Atta-Ur Rahman (Editor) “Studies in Natural Products Chemistry Volume 82”, Elsevier, 2024, 82, pp. 235–245 (Hardback ISBN: 9780443157561, eBook ISBN: 9780443157578)

Publications

From Research gate Click
From Scopus Click
From Orcid Click
From Google Scholar Click

Selected Publications

  1. Jaiboon, K., Chouwatat, P., and Napathorn, S.C.* (2024) Valorization of biodiesel-derived crude glycerol for simultaneous biosynthesis of biodegradable polyhydroxybutyrate and exopolysaccharide by the newly isolated Burkholderia sp. SCN-KJ Volume 281, Part 4, November 2024, 136556 https://doi.org/10.1016/j.ijbiomac.2024.136556 [Tier 1, Impact Factor 7.7]
  2. Phothong, N., Pattarakankul, T., Morikane, S., Palaga, T., Aht-Ong, D., Honda, K., and Napathorn, S.C.* (2024) Stability and release mechanism of double emulsification (W1/O/W2) for biodegradable pH-responsive polyhydroxybutyrate/cellulose acetate phthalate microbeads loaded with the water-soluble bioactive compound niacinamide, International Journal of Biological Macromolecules, Volume 271, Part 2, June 2024, 132680 https://doi.org/10.1016/j.ijbiomac.2024.132680 [Tier 1, Impact Factor 8.2]
  3. Phothong, N., Aht-Ong D., and Napathorn, S.C.* (2024) Fabrication, characterization and release behavior of α-tocopherol acetate-loaded pH responsive polyhydroxybutyrate/cellulose acetate phthalate microbeads International Journal of Biological Macromolecules, Volume 260, Part 2, March 2024, 129535 https://doi.org/10.1016/j.ijbiomac.2024.129535 [Tier 1, Impact Factor 8.2]
  4. Phothong, N., Boontip, T., Chouwatat, P., Aht-Ong, D., and Napathorn, S.C.* (2024) Preparation and characterization of astaxanthin-loaded biodegradable polyhydroxybutyrate (PHB) microbeads for personal care and cosmetic applications, International Journal of Biological Macromolecules, Volume 257, Part 2, February 2024, 128709 https://doi.org/10.1016/j.ijbiomac.2023.128709 [Tier 1, Impact Factor 8.2]
  5. Theeraseematham, P., Aht-Ong, D., Honda, K. and Napathorn, S.C.* (2023) Valorization of agro-industrial waste from the cassava industry as esterified cellulose butyrate for polyhydroxybutyrate-based biocomposites PLoS ONE accepted [Q1, Impact Factor 3.752]
  6. Raunhan, R., Jantharadej, K., Mhuantong, W., Napathorn, S.C., and Suwannasilp, B.B.* (2023) Valorization of food waste derived anaerobic digestate into polyhydroxyalkanoate (PHA) using Thauera mechernichensis TL1, Waste Management, 171, 248-258. https://doi.org/10.1016/j.wasman.2023.08.039 [Q1, Impact Factor 8.1]
  7. Goswami L, Kushwaha A, Napathorn S.C., and Kim B.S.* (2023) Valorization of organic wastes using bioreactors for polyhydroxyalkanoate production: Recent advancement, sustainable approaches, challenges, and future perspectives, International Journal of Biological Macromolecules, 125743, https://doi.org/10.1016/j.ijbiomac.2023.125743 [T1, Impact Factor 8.2]
  8. Prasertsilp P, Pattaragulwanit K, Kim BS, and Napathorn, S.C.* (2023) Microwave-assisted cassava pulp hydrolysis as food waste biorefinery for biodegradable polyhydroxybutyrate production, Frontiers in Bioengineering and Biotechnology 11:1131053. doi: 10.3389/fbioe.2023.1131053 [Impact Factor 6.06]
  9.  Sinsukudomchai P., Aht-Ong D., Honda K., and Napathorn, S.C.* (2023) Green composites made of polyhydroxybutyrate and long-chain fatty acid esterified microcrystalline cellulose from pineapple leaf. PLoS ONE 18(3): e0282311. doi:10.1371/journal.pone.0282311 [Impact Factor 3.752]
  10. Unrean, P, Napathorn, S.C., Tee, K.L., Wong, T.S. and Champreda, V. (2023) Lignin to polyhydroxyalkanoate bioprocessing by novel strain of Pseudomonas monteilii, Biomass Conversion and Biorefinery, 13, pages4651–4657 (2023). doi:10.1007/s13399-021-01525-7 [Impact Factor 2.602]
  11. Wongmoon, C. and Napathorn, S.C.* (2022) Optimization of efficient recovery for poly(3-hydroxybutyrate) using the green solvent 1,3-dioxolane, Frontiers in Bioengineering and Biotechnology Dec 6;10:1086636. doi:10.3389/fbioe.2022.1086636 [Impact Factor 6.06]
  12. Boontip, T., Waditee-Sirisattha, R., Honda, K. and Napathorn, S.C.* (2021) Strategies for poly(3-hydroxybutyrate) production using a cold-shock promoter in Escherichia coli, Frontiers in Bioengineering and Biotechnology 9, 666036. doi: 10.3389/fbioe.2021.666036 [Impact Factor 6.06] 
  13. Napathorn, S.C.*, Visetkoop, S., Pinyakong, O., Okano, K. and Honda, K. (2021) Polyhydroxybutyrate (PHB) production using an arabinose-inducible expression system in comparison with cold shock inducible expression system in Escherichia coli, Frontiers in Bioengineering and Biotechnology 9, 661096. doi: 10.3389/fbioe.2021.661096 [Impact Factor 5.89] 
  14. Khomlaem, C., Aloui, H., Deshmukh, A.R., Yun, J.-H., Kim, H.-S., Napathorn, S.C., Kim, B.S. (2020) Defatted Chlorella biomass as a renewable carbon source for polyhydroxyalkanoates and carotenoids co-production, Algal Research 51, 102068. [Impact Factor 4.008] 
  15. Punrata, T., Thaniyavarna, J.*, Napathorn, S.C., Anuntagoolb, J., Thaniyavarn, S. (2020) Production of a sophorolipid biosurfactant by Wickerhamomyces anomalus MUE24 and its use for modification of rice flour properties, Science Asia 46, 11-18. [Impact Factor 0.425] 
  16. Sukruansuwan, V. and Napathorn, S.C* (2018) Use of agro-industrial residue from the canned pineapple industry for polyhydroxybutyrate production by Cupriavidus necator strain A-04, Biotechnology for Biofuels 11, 202. [Impact Factor 5.498] 
  17. Yabueng, N. and Napathorn, S.C.* (2018) Toward non-toxic and simple recovery process of poly(3-hydroxybutyrate) using the green solvent 1,3-dioxolane, Process Biochemistry  69, 197-207. [Impact Factor 2.521] 
  18. Muangwong, A., Boontip, T, Pachimsawat, J and Napathorn, S. Chanprateep* (2016) Medium chain length polyhydroxyalkanoates consisting primarily of unsaturated 3-hydroxy-5-cis-dodecanoate synthesized by newly isolated bacteria using crude glycerol, Microbial Cell Factories 15, 55. [Impact Factor 4.221]
  19. Wisuthiphaet, N. and Napathorn, S. Chanprateep* (2016) Optimisation of the use of products from the cane sugar industry for poly(3-hydroxybutyrate) production by Azohydromonas lata DSM 1123 in fed-batch cultivation, Process Biochemistry 51, 352-361. [Impact Factor 2.521]
  20. Napathorn, S. Chanprateep* (2014) Biocompatibilities and biodegradation of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)s produced by a model metabolic reaction-based system, BMC Microbiology 14, 285. doi:10.1186/s12866-014-0285-4 [Impact Factor 2.98]
  21. Khumvanit, P., Napathorn, S. Chanprateep and Suwannasilp, B. Boonchayaanant* (2014) Polyhydroxyalkanoate production with a feast/famine feeding regime using sludge from wastewater treatment plants of the food and beverage industry, Journal of Biobased Materials and Bioenergy 8(6), 641-647 [Impact Factor = 0.826]
  22. Jaturapaktrarak, C., Napathorn, S. Chaprateep*, Cheng, M., Okano, K., Ohtake, H. and Honda, K.* (2014) In vitro conversion of glycerol to lactate with thermophilic enzymes. Bioresources and Bioprocessing 1(1),18. [Impact Factor = 4.578]
  23. Anuleejun, S., Palaga, T., Katakura, Y., Kuroki, M., Kuroki, M. and Napathorn, S.  Chanprateep*(2014) Optimal production of a fusion protein consisting of a single-chain variable fragment antibody against a tumor-associated antigen and interleukin-2 in fed-batch culture of Pichia pastoris, Anticancer Research 34(8), 3925-3936. [Impact Factor = 1.872] 
  24. Napathorn, S. Chanprateep*, Kuroki, M. and Kuroki, M. (2014) High expression of fusion proteins consisting of a single-chain variable fragment antibody against a tumor-associated antigen and interleukin-2 in Escherichia coli, Anticancer Research 34(8), 3937-3946. [Impact Factor = 1.872] 
  25. Chanprateep, S.* (2010) Current Trends in Biodegradable polyhydroxyalkanoates, Journal of Bioscience and Bioengineering 110(6), 621-632. [Impact Factor = 1.79]  *ScienceDirect Top25 certificate of the most downloaded articles (2010-2015) and Top10 of the most cited article of Journal of Bioscience and Bioegningeering, extracted from Scopus since 2009
  26. Chanprateep, S.*, Buasri, K., Muangwong, A. and Utiswannakul, P. (2010) Biosynthesis and biocompatibility of biodegradable poly(3-hydroxybutyrate-co-4-hydroxybutyrate). Polymer Degradation and Stability 95(10), 2003-2012. [Impact Factor = 2.63] 
  27. Chanprateep, S.*, Katakura, Y., Shimizu, H., Visetkoop, S., Kulpreecha, S. and Shioya, S. (2008) Characterization of new isolated Ralstonia eutropha strain A-04 and kinetic study of biodegradable copolyester poly(3-Hydroxybutyrate-co-4-Hydroxybutyrate) production. Journal of Industrial Microbiology & Biotechnology 35(11), 1205-1215. [Impact Factor = 2.505] 
  28. Chanprateep, S. and Kulpreecha, S. (2006) Production and characterization of biodegradable terpolymer poly(3-hydroxybutyrate-co-3-hydrobyvalerate-co-4-hydroxybutyrate) by Alcaligenes sp. A-04. Journal of Bioscience and Bioengineering 101(1), 51-56. [Impact Factor = 1.79] * THE EXCELLENT PAPER AWARD 2007, The Society for Biotechnology, Japan
  29. Chanprateep, S.*, Shimizu, H. and Shioya, S. (2006) Characterization and enzymatic degradation of microbial copolyester P(3HB-co-3HV)s produced by metabolic reaction model based system. Polymer Degradation and Stability 91(12), 2941-2950. [Impact Factor = 2.63] 
  30. Shimizu, H., Chanprateep, S., Kulpreecha, S., Boonruangthavorn, A., and Shioya, S. (2005) Development of production processes of a biodegradable polymer, poly(3-hydroxybutyrate-co-3-hydroxyvalerate): Metabolic pathway analysis, quality control of polymer, and use of starch. Biotechnology for sustainable utilization of biological resources in the tropics. (ed. T. Seki) 17, 78-83.
  31. Chanprateep, S., Kikuya, K., Seki, S, Takawa, S., Shimizu, H., and Shioya, S. (2003) Non-isothermal crystallization kinetics of biodegradable random poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and block one. Journal of Chemical Engineering Japan 36 (6), 639-646. [Impact Factor = 0.609] 
  32. Chanprateep, S., Kikuya, K., Shimizu, H., and Shioya, S. (2002) Model predictive control for biodegradable polyhydroxyalkanoates production in fed-batch culture. Journal of  Biotechnology 95 (2), 157 – 169. [Impact Factor = 2.88] 
  33. Chanprateep, S., Abe, N., Shimizu, H., and Shioya, S. (2001) Multivariable control of alcohol concentrations in the production of polyhydroxyalkanoates (PHAs) by Paracoccus denitrificans. Biotechnololgy and Bioengineering 74, 116-124. [Impact Factor = 4.164] 
  34. Shimizu, H., Chanprateep, S., Hirunrattanakorn, A., Kikuya, K., Shioya, S. (2001) Quality control of polyhydroxyalkanoates in fed-batch culture based on a metabolic reaction model. Eighth International Conference on Computer Applications in Biotechnology pp. 207-212
  35. Chanprateep, S., Shimizu, H., and Shioya, S. (1998) Optimal production of biodegradable copolymer poly(3-hydroxybutyrate-co-4-hydroxybutyrate),  P(3HB-co-4HB), by Alcaligenes sp. A-04. (ed. T. Yoshida) 21, 281–292.

Grants, Awards and Recognition

1997 – 1998 UNESCO Fellowship, ICBiotec, Osaka University, Japan
1999 – 2002 MONBUSHO scholarship, Japanese Government, Japan
2003 The ASAHI Oversea Research Grant Award, The Asahi Glass Foundation, Japan
2004 – 2005 LICR/CORNELL Fellowship, Cornell University, Ithaca, USA
2006 – 2010 Research grant “Joint Program in the Field of Biotechnology” NRCT/NSTDA/JST
2006 – 2007 Ratchadaphi-seksomphot Endowment Fund, Chulalongkorn University
2007 THE EXCELLENT PAPER AWARD, The Society for Biotechnology, Japan
2009 THE YOUNG ASIAN BIOTECHNOLOGIST PRIZE, The Society for Biotechnology, Japan
2009 – 2010 Research grants “TRF-MAG window I and II” and “Ratchadaphi-seksomphot Endowment Fund”, Chulalongkorn University
2010 (1) OUTSTANDING YOUNG SCIENTIST AWARD, The science Forum, Faculty of Science, Chulalongkorn University
(2) CHULA-MONGKUT AWARD, Faculty of Science, Chulalongkorn University
(3) BEST PRESENTATION AWARD, The International Conference TISD 2010 (Ms. Amtiga Maungwong)
2011 – 2013 Research grant “The Higher Education Research Promotion and National University Project of Thailand”
2011 – 2013 Joined Research Faculty of Science and LION corp. (Thailand) Ltd.
2013 – 2015 Research cluster  “Ratchadaphi-seksomphot Endowment Fund”, Chulalongkorn University
2019 Research grants from Bangchak Corporation Public Company Limited
2019 – 2021 Research grant from Agriculture and Biotechnology Industry Coordination Office, Industry Division and Bangchak Corporation Public Company Limited
2023 Research grant from Thematic Innovation: National Innovation Agency (Public Organization) and Thai Wah Agri Biotech Co. Ltd. (TWPC), Innovative Agriculture Section from 1 May 2023 to 30 November 2024
2024 The world’s Top 2% Scientists by Elsevier (single year citation impact from Stanford University)